Variational Bayesian Learning of Directed Graphical Models with Hidden Variables
نویسندگان
چکیده
A key problem in statistics and machine learning is inferring suitable structure of a model given some observed data. A Bayesian approach to model comparison makes use of the marginal likelihood of each candidate model to form a posterior distribution over models; unfortunately for most models of interest, notably those containing hidden or latent variables, the marginal likelihood is intractable to compute. We present the variational Bayesian (VB) algorithm for directed graphical models, which optimises a lower bound approximation to the marginal likelihood in a procedure similar to the standard EM algorithm. We show that for a large class of models, which we call conjugate exponential, the VB algorithm is a straightforward generalisation of the EM algorithm that incorporates uncertainty over model parameters. In a thorough case study using a small class of bipartite DAGs containing hidden variables, we compare the accuracy of the VB approximation to existing asymptotic-data approximations such as the Bayesian Information Criterion (BIC) and the Cheeseman-Stutz (CS) criterion, and also to a sampling based gold standard, Annealed Importance Sampling (AIS). We find that the VB algorithm is empirically superior to CS and BIC, and much faster than AIS. Moreover, we prove that a VB approximation can always be constructed in such a way that guarantees it to be more accurate than the CS approximation.
منابع مشابه
Variational algorithms for approximate Bayesian inference
The Bayesian framework for machine learning allows for the incorporation of prior knowledge in a coherent way, avoids overfitting problems, and provides a principled basis for selecting between alternative models. Unfortunately the computations required are usually intractable. This thesis presents a unified variational Bayesian (VB) framework which approximates these computations in models wit...
متن کاملThe Hidden Life of Latent Variables: Bayesian Learning with Mixed Graph Models
Directed acyclic graphs (DAGs) have been widely used as a representation of conditional independence in machine learning and statistics. Moreover, hidden or latent variables are often an important component of graphical models. However, DAG models suffer from an important limitation: the family of DAGs is not closed under marginalization of hidden variables. This means that in general we cannot...
متن کاملIncorporating Expressive Graphical Models in VariationalApproximations: Chain-graphs and Hidden Variables
Global variational approximation methods in graphical models allow efficient approximate inference of complex posterior distributions by using a simpler model. The choice of the approximating model determines a tradeoff between the complexity of the approximation procedure and the quality of the approximation. In this paper, we consider variational approximations based on two classes of models ...
متن کاملGraphical Models and Exponential Families
We provide a classi cation of graphical models according to their representation as subfamilies of exponential families. Undirected graphical models with no hidden variables are linear exponential families (LEFs), directed acyclic graphical models and chain graphs with no hidden variables, including Bayesian networks with several families of local distributions, are curved exponential families ...
متن کاملPropagation Algorithms for Variational Bayesian Learning
Variational approximations are becoming a widespread tool for Bayesian learning of graphical models. We provide some theoretical results for the variational updates in a very general family of conjugate-exponential graphical models. We show how the belief propagation and the junction tree algorithms can be used in the inference step of variational Bayesian learning. Applying these results to th...
متن کامل